Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels—5 to 10 mg cm−2— due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm−2 yield high gravimetric (>1200 mA·hour g−1) and areal (19 mA·hour cm−2) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%. The use of sulfur cathodes in lithium-sulfur (Li-S) batteries and silicon anodes in lithium-ion batteries (LIBs) is the most attractive example of inexpensive electrodes with excellent ability to store lithium, hence the potential for outperforming today’s LIBs. An inherent problem of these electrodes, regardless of the battery chemistry, is the structural f...